Expedient Synthesis of Polyhydroxyisoflavones

Kristiina Wähälä and Tapio A. Hase*
Department of Chemistry, University of Helsinki, Vuorikatu 20, SF-00100 Helsinki, Finland \dagger

A general and direct synthesis of polyhydroxy isoflavones (3-phenyl-4H-1-benzopyran-4-ones) starting from the corresponding unprotected phenols and arylacetic acids is described. The aryl rings may carry additional alkyl, methoxy and/or halogeno groups. Intermediate polyhydroxy deoxybenzoins (1,2-diphenylethanones) can also be isolated in good yield.

Polyhydroxyisoflavanoids have been widely investigated during the last decade, owing to their range of biological properties of which anticancer activity ${ }^{1-4}$ is an example. For their synthesis, several synthetic steps and the need for protection of free phenolic hydroxy groups are required in literature methods such as oxidative transformations of chalcone intermediates ${ }^{5-7}$ or various ring closures of deoxybenzoins. ${ }^{7}$ Polyhydroxydeoxybenzoins have widely been used as starting materials for isoflavones but only a few attempts have been made at carrying out the preparations using unprotected reactants. Bass ${ }^{8}$ reported a single-stage synthesis of chromones from unprotected 2,4,6-trihydroxyphenyl alkyl ketones by treatment with boron trifluoride-diethyl ether and methanesulphonyl chloride in dimethylformamide (DMF). Pelter et al. ${ }^{9.10}$ have studied the synthesis of isoflavones from unprotected hydroxydeoxybenzoins by using DMF dimethyl acetal alone or in conjunction with boron trifluoride-diethyl ether and DMF.

Whilst addition of a one-carbon unit to a protected polyhydroxydeoxybenzoin can be accomplished in a number of ways. Hoesch-reaction-based syntheses of polyoxydeoxybenzoins are often laborious, time-consuming and give poor yields. ${ }^{11}{ }^{14}$ Improved yields of phenolic deoxybenzoins have been obtained from resorcinol and arylacetic acids in the presence of boron trifluoride. ${ }^{15}$

We now introduce a direct, one-pot procedure for polyhydroxyisoflavones starting from appropriately substituted phenols and phenylacetic acids without resorting to any of the often employed hydroxy group protection-deprotection sequences. Our new method also affords a quick entry to a number of the intermediate polyoxydeoxybenzoins, prepared here in good yield by Friedel-Crafts reaction using $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ as the catalyst and as a solvent (Scheme 1). The cyclization reaction

Scheme 1 Rcagents: i, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; ii, $\mathrm{DMF}, \mathrm{MeSO}_{2} \mathrm{Cl}$

[^0]of the polyoxydeoxybenzoins is also catalysed by boron trifluoride. When the Friedel-Crafts acylation reaction is complete (by TLC) the C_{1} source (dry DMF; $25^{\circ} \mathrm{C}$) and mesyl chloride (at $50^{\circ} \mathrm{C}$) are added and the mixture is heated on a water-bath. Excess of boron trifluoride-diethyl ether can be recovered by vacuum distillation from the reaction mixture. To illustrate the scope of the reaction, 19 hydrox yisoflavones (three of them new compounds, $\mathbf{4 d}, 4 \mathrm{i}, \mathbf{4 m}$ and nine known natural products $\mathbf{4 a}, \mathbf{4 b}, \mathbf{4 e}, \mathbf{4 g}, \mathbf{4 j}, \mathbf{4 k}, \mathbf{4 p}, \mathbf{4 q} .4 \mathbf{r})$ and 16 hydroxydeoxybenzoins (five of them new, 3c, 31, 3m, 3n, 3p) were synthesized, mostly in good yield (Table 1). 4'.8-Dihydroxyisoflavone $\mathbf{4 b}$, recently isolated from natural sources, ${ }^{21}$ has now been synthesized for the first time.
A valuable aspect of the new procedural modification is that since free hydroxy groups are compatible with the reaction conditions, numerous mixed hydroxy/methoxy-substituted isoflavones, commonly encountered ${ }^{44}$ as natural products, are directly accessible. This is fortunate because benzyl or silyl ethers or acyl groups are not stable under the reaction conditions while protection as the methyl ether, one of the very few phenol masks stable under these reaction conditions, is obviously not applicable either for any mixed hydroxy/ methoxy substituted target. The same applies of course to the synthesis of polyoxygenated deoxybenzoins although these compounds occur much less frequently in Nature.

Monohydric phenols are usually acylated easily but the product is predominantly the para isomer because of the relatively large size of the acyl group and the para-directing effect of the catalyst. ${ }^{45}$ para-Acylated phenols, obviously incapable of cyclizing to isoflavones, are only avoided when the phenolic para position is occupied to start with. Thus, p-cresol 1d afforded, with 4-hydroxyphenylacetic acid 2b, a 64% yield of 4'-hydroxy-6-methylisoflavone 4d.

Among the dihydric phenols, resorcinol and substituted resorcinols react with variously substituted phenylacetic acids, giving excellent yields of isoflavones, or deoxybenzoins if required. Catechol $\mathbf{1 b}$ undergoes mainly para-acylation which is why the 8 -hydroxy-substituted isoflavone $\mathbf{4 b}$ is produced in 15% yield only. Hydroquinone 1c reacts somewhat sluggishly to give the ortho-acylation product 3d in 68% yield and the corresponding isoflavone $\mathbf{4 c}$ in 51% yield.

The trihydric phenols pyrogallol $\mathbf{1 k}$ and phloroglucinol 1 i react cleanly to give deoxybenzoins or isoflavones as required. Hydroxyhydroquinone $\mathbf{1 j}$ reacted very rapidly with boron trifluoride-diethyl ether to give unknown polar products of an intensely violet colour. Some starting material could be recovered but no deoxybenzoin or isoflavone derivatives are formed.

Hydroxy substituents at the ortho, meta or para position in the arylacetic acid moiety are similarly compatible. The presence of an ortho hydroxy group leads to the formation of the

Table 1

Substituents in phenol 1	Substituents$\text { in } \mathrm{ArCH}_{2} \mathrm{CO}_{2} \mathrm{H}$$2$	Product and yield (\%)					
		Reaction time ($t / \mathrm{h})^{a}$	Deoxybenzoin 3 (substituent)	Ref.	Reaction time $(t / \mathrm{h})^{d}$	Isoflavone 4 (substituent)	Ref.
a H	a H	1.5	a $2-\mathrm{OH}(23 \%)$	16-18	1	a $\mathrm{H}(98 \%)^{\text {b }}$	18-20
a	a	1.5	b 4 -OH (75%)	16, 17			
b $2-\mathrm{OH}$	b 4' -OH	2	c $3,4,4{ }^{\prime}-\mathrm{OH}(78 \%)$	${ }^{\text {c }}$	1	b $4,8-\mathrm{OH}(15 \%)$	21
c $4-\mathrm{OH}$	a	6	d $2,5-\mathrm{OH}(68 \%)$	22	6	c $6-\mathrm{OH}(51 \%)$	22
d $4-\mathrm{Me}$	b	5			5	d 6 - $\mathrm{Me}, 4^{\prime}-\mathrm{OH}(64 \%)$	c
e $3-\mathrm{OH}$	a	1	e $2,4-\mathrm{OH}(89 \%)$	23	1	e $7-\mathrm{OH}(93 \%)$	24
e	c $3^{\prime}-\mathrm{OH}$	1	f $2,3,4-\mathrm{OH}(93 \%)$	15	3	f $3,7-\mathrm{OH}(91 \%)$	15
e	b	1	g $2,4,4{ }^{\prime}-\mathrm{OH}(98 \%)$	25.27	1.5	g $4^{\prime}, 7-\mathrm{OH}(98 \%)$	28-31
e	d $2^{\prime}-\mathrm{OMe}$	1	h $2,4-\mathrm{OH}, 2^{\prime}-\mathrm{OMe}$	32	1	$\text { h } \underset{(98 \%)}{7-\mathrm{OH}, 2^{\prime}-\mathrm{OMe}}$	32
e	e 3'-OMe	1	$\begin{array}{ll} \text { i } & 2,4-\mathrm{OH}, 3^{\prime}-\mathrm{OMe} \\ (96 \%) \end{array}$	15	1	$\begin{aligned} & \text { i } 7-\mathrm{OH}, 3^{\prime}-\mathrm{OMe} \\ & (84 \%) \end{aligned}$	
e	f $4^{\prime}-\mathrm{OMe}$	1.5	$\begin{aligned} & \text { j } \\ & (98 \%) \\ & \left(98 \% \mathrm{OH}, 4^{\prime}-\mathrm{OMe}\right. \end{aligned}$	15,26, 27, 33	1.5	$\begin{aligned} & \text { j } \begin{array}{l} 7-\mathrm{OH}, 4^{\prime}-\mathrm{OMe} \\ (96 \%) \end{array} \end{aligned}$	29,31, 34, 35
e	g $3^{\prime}-\mathrm{OMe}, 4^{\prime}-\mathrm{OH}$	1	$\begin{aligned} & \text { k } 2,4,4^{\prime}-\mathrm{OH}, 3^{\prime}-\mathrm{OMe} \\ & \left(99^{\circ} \%\right) \end{aligned}$	36	1.5	$\begin{aligned} & \text { k } 4^{\prime}, 7-\mathrm{OH}, 3^{\prime}-\mathrm{OMe} \\ & \left(94^{\circ} \%\right) \end{aligned}$	37, 38
e	h $2^{\prime}-\mathrm{OH}$	1			1	I $2^{\prime}, 7-\mathrm{OH}(72 \%)$	32
f $3-\mathrm{OH}, 4-\mathrm{Cl}$	b	1	$\begin{aligned} & \mathrm{I} \underset{(67 \%)}{2,4,4^{\prime}-\mathrm{OH}, 5-\mathrm{Cl}} \end{aligned}$	c	1	$\begin{aligned} & \text { m } 4^{\prime}, 7-\mathrm{OH}, 6-\mathrm{Cl} \\ & \left(94^{\circ}\right) \end{aligned}$	c
g 3-OH,2-Me	b	5	$\begin{aligned} & \text { m } 2,4,4^{\prime}-\mathrm{OH}, 3-\mathrm{Me} \\ & (97 \%) \end{aligned}$	c	5	$\begin{aligned} & \text { n } 4^{\prime}, 7-\mathrm{OH}, 8-\mathrm{Me} \\ & (91 \%) \end{aligned}$	39
h $3-\mathrm{OH}, 5-\mathrm{Me}$	b	2	$\begin{aligned} & \text { n } 2,4,4^{\prime}-\mathrm{OH}, 6-\mathrm{Me} \\ & \left(86^{\circ} \%\right) \end{aligned}$	c	2	$\begin{aligned} & \text { o } 4,7-\mathrm{OH}, 5-\mathrm{Me} \\ & (84 \%) \end{aligned}$	40
i $3,5-\mathrm{OH}$	a	1			1	p $5,7-\mathrm{OH}(90 \%)$	26, 41, 42
i	f	1			1	$\text { q } 5,7-\mathrm{OH}, 4^{\prime}-\mathrm{OMe}$	26, 34, 35
i	b	$5^{\text {d }}$	$\begin{gathered} \text { o } 2,4,44^{\prime}, 6-\mathrm{OH} \\ (83 \%) \end{gathered}$	27, 43	1	r $4^{\prime}, 5,7-\mathrm{OH}(53 \%)$	26, 29, 34
j $3,4-\mathrm{OH}$	b		intractable complex mixture			intractable complex mixture	
k $2,3-\mathrm{OH}$	b	1	p $2,3,4,4^{\prime}-\mathrm{OH}(92 \%)$	c	1	s $4^{\prime}, 7,8-\mathrm{OH}(83 \%)$	14,28

${ }^{a}$ Mixture heated on water-bath at $60-70{ }^{\circ} \mathrm{C} .{ }^{b}$ From isolated 2-hydroxydeoxybenzoin. ${ }^{c}$ New compound. ${ }^{d}$ At $0{ }^{\circ} \mathrm{C}$.
benzofuran 5 as a minor by-product but even here the corresponding isoflavone $4 l$ is the main product. However, attempted isolation of the intermediate deoxybenzoin failed due to cyclization to the benzofuran during work-up.

5

Experimental

M.p.s were determined in open capillary tubes with an Electrothermal apparatus, and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian GEMINI-200 FT NMR spectrometer using a standard ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ dual probe (chemical shifts in δ). The assignments are based on chemicalshift data and DEPT and HETCOR measurements; assignments of peaks differing by $\delta 1$ unit or less may be ambiguous. J-Values are given in Hz . Mass spectra were obtained with a JEOL JMS O1SG 2 mass spectrometer operating at 75 eV and HRMS spectra with a JEOL JMS SX102 mass spectrometer operating at 70 eV . Samples were introduced at $120-150^{\circ} \mathrm{C}$ by a direct-
inlet probe. TLC was conducted on Merck silica gel $60 \mathrm{~F}_{254}$ plates and Merck silica gel $60(0.040-0.063 \mathrm{~mm}, 230-400$ mesh $)$ was used for flash column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ EtOAc (7:2) elution for the purification of crude products. DMF and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were dried and vacuum distilled over CaH_{2} before use. All new compounds were fully characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, LRMS and HRMS analysis and they were homogeneous by TLC.

4-Hydroxy-3-methoxyphenylacetic Acid $\mathbf{2 g}$.-This was prepared according to Nakatsubo's method ${ }^{46}$ from benzyloxyacetovanillone (0.01 mol) by treatment with thallium(III) nitrate (0.01 mol) in methanol ($25 \mathrm{~cm}^{3}$) containing $70 \% \mathrm{HClO}_{4}$ (5 cm^{3}) at room temperature. During the work-up procedure, namely evaporation of the solvent methanol from the reaction mixture, the product was found to be nitrated at the aromatic nucleus, giving a 98% yield of the methyl ester of 4-benzyloxy-3-methoxy-5-nitrophenylacetic acid. Therefore, the isolation procedure was changed to that used by McKillop. ${ }^{47}$ After the oxidative rearrangement the precipitated thallium(I) nitrate was removed by filtration and the filtrate was diluted with water and extracted by chloroform. After hydrolysis of the ester with $10 \% \mathrm{KOH}$ in MeOH -water ($1: 1$) following the hydration with $10 \% \mathrm{Pd} / \mathrm{C}$ as a catalyst in aq. ethanol, 3-
methoxy-4-hydroxyphenylacetic acid was collected in 86% overall yield.

General Procedure for Isoflavones and Deoxybenzoins.-A phenol $1(0.050 \mathrm{~mol})$ and an arylacetic acid $2(0.050 \mathrm{~mol})$ were dissolved into freshly distilled $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (20 mol equiv.) under argon. The mixture was stirred and heated on a water-bath. For cyclization the reaction mixture was cooled to room temperature and dry DMF ($77 \mathrm{~cm}^{3}$) was added. The mixture was again heated to 50 C and a solution of methanesulphonyl chloride ($12 \mathrm{~cm}^{3}$) in dry DMF ($20 \mathrm{~cm}^{3}$) was added slowly. After reaction at $60-70$ C the reaction mixture was cooled to room temperature and poured, without mechanical stirring, into a large volume of ice-cold aq. sodium acetate $\left(12 \mathrm{~g} / 100 \mathrm{~cm}^{3}\right)$. The crude product 4 was filtered off and recrystallized from a suitable solvent.

The intermediate deoxybenzoins $\mathbf{3}$ in many cases crystallized from the reaction mixture. They were isolated by washing of the collected material thoroughly with aq. $\mathrm{NaOAc}\left(12 \mathrm{~g} / 100 \mathrm{~cm}^{3}\right)$ and recrystallization. If the reaction mixture was homogenous, deoxybenzoins were isolated by pouring of the mixture into a large volume of aq. NaOAc , extraction ($\mathrm{Et}_{2} \mathrm{O}$), drying and evaporation of the extract and recrystallization.

3,4,4'-Trihydroxydeoxybenzoin [1-(3,4-dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone] 3c. Crystals, m.p. $211^{\circ} \mathrm{C}$ (from aq. $\mathrm{EtOH}) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 4.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.78(2 \mathrm{H}, \mathrm{d}, J 8.7$, $3^{\prime}-$ and $\left.5^{\prime}-\mathrm{H}\right), 6.91(1 \mathrm{H}, \mathrm{d}, J 8.8,5-\mathrm{H}), 7.13\left(2 \mathrm{H}, \mathrm{d}, J 8.7,2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.54-7.60(2 \mathrm{H}, \mathrm{m}, 2$-and $6-\mathrm{H}), 8.21(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 8.35(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH})$ and $8.70(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 44.70\left(\mathrm{CH}_{2}\right)$, 115.99 (C-5), 116.39 (C-3', -5'), 116.55 (C-2), 123.60 (C-6), 127.70 $\left(\mathrm{C}-1^{\prime}\right), 130.73(\mathrm{C}-1), 131.65\left(\mathrm{C}-2^{\prime},-6^{\prime}\right), 146.16(\mathrm{C}-3), 151.35$ $\left(\mathrm{C}-4^{\prime}\right), 157.30(\mathrm{C}-4)$ and $197.47(\mathrm{CO}) ; m / z 244\left(\mathrm{M}^{+}, 48 \%\right), 138$ (35), 187 (100), 109 (47), 107 (59), 81 (22) and 77 (23) (Found: $\mathrm{M}^{+}, 244.0742 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{M}, 244.0736$).

5-Chloro-2,4,4'-trihydroxydeoxybenzoin [1-(5-chloro-2,4-dihydroxyphenyl)-2-(4-hydroxyphenyl)ethanone] 31. Off-white crystals, m.p. $196-197^{\circ} \mathrm{C}$ (from $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathbf{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone) $4.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.51(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 6.81\left(2 \mathrm{H}, \mathrm{d}, J 8.6,3^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.18\left(2 \mathrm{H}, \mathrm{d}, J 8.6,2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 8.07(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, $8.31(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 10.11(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $12.60(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 44.49\left(\mathrm{CH}_{2}\right), 105.21(\mathrm{C}-3), 112.90(\mathrm{C}-5)$, 114.36 (C-1), $116.60\left(\mathrm{C}-3^{\prime}, 5^{\prime}\right), 126.67\left(\mathrm{C}-1^{\prime}\right), 131.75$ (C-2', $\left.-6^{\prime}\right), 133.66(\mathrm{C}-6), 157.76\left(\mathrm{C}-4^{\prime}\right), 161.17(\mathrm{C}-2), 165.32(\mathrm{C}-4)$ and $204.25(\mathrm{CO}) ; m / z 278\left(\mathrm{M}^{+}, 14 \%\right.$), 173 (32), 171 (100), 107 (20) and 77 (7) (Found: $\mathrm{M}^{+}, 278.0355 . \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{4}$ requires M , 278.0346).

2,4,4'-Trihydroxy-3-methyldeoxybenzoin [1-(2,4-dihydroxy-3-methylphenyl)-2-(4-hydroxyphenyl)ethanone] 3m. Off-white crystals, m.p. $187-188^{\circ} \mathrm{C}$ (from propan-2-ol); $\delta_{\mathbf{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone) $2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{MeAr}), 4.19\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.50(1 \mathrm{H}, \mathrm{d}, J$ $8.8,5-\mathrm{H}), 6.85\left(2 \mathrm{H}, \mathrm{d}, J 8.6,3^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.24\left(2 \mathrm{H}, \mathrm{d}, J 8.6,2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.70(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.81(1 \mathrm{H}, \mathrm{d}, J 8.8,6-\mathrm{H}), 8.33(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH})$ and $9.83(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 8.01$ (MeAr), 44.60 $\left(\mathrm{CH}_{2}\right), 108.19(\mathrm{C}-5), 112.22(\mathrm{C}-3), 113.40(\mathrm{C}-1), 116.43\left(\mathrm{C}-3^{\prime}\right.$, $\left.-5^{\prime}\right), 127.24\left(\mathrm{C}-1^{\prime}\right), 131.32(\mathrm{C}-6), 131.54\left(\mathrm{C}-2^{\prime},-6^{\prime}\right), 157.47(\mathrm{C}-2)$, $163.37\left(\mathrm{C}-4^{\prime}\right), 164.84(\mathrm{C}-4)$ and $204.28(\mathrm{CO}) ; m / z 258\left(\mathrm{M}^{+}, 17 \%\right)$, $165(4), 152(16), 151(100), 122(5), 107(11), 95(5)$ and $77(7)$ (Found: $\mathrm{M}^{+}, 258.0887 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $\mathrm{M}, 258.0892$).

2,4,4'-Trihydroxy-6-methyldeoxybenzoin [1-(2,4-dihydroxy-6-methylphenyl)-2-(4-hydroxyphenyl)ethanone] 3n. Off-white crystals, m.p. $186-187^{\circ} \mathrm{C}$ (from aq. EtOH$) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone) $2.73(3 \mathrm{H}, \mathrm{s}$, MeAr $), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.35(1 \mathrm{H}, \mathrm{d}, J 2.4,3-\mathrm{H})$, $6.58(1 \mathrm{H}, \mathrm{d}, J 2.4,5-\mathrm{H}), 6.88\left(2 \mathrm{H}, \mathrm{d}, J 8.7,3^{\prime}-\mathrm{and} 5^{\prime}-\mathrm{H}\right), 7.18$ (2 $\mathrm{H}, \mathrm{d}, J 8.7,2^{\prime}$ - and $\left.6^{\prime}-\mathrm{H}\right), 8.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 10.82(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{OH})$ and $11.17(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone) 22.55 (MeAr), $50.21\left(\mathrm{CH}_{2}\right), 101.61(\mathrm{C}-3), 111.57(\mathrm{C}-5), 115.96\left(\mathrm{C}-3^{\prime},-5^{\prime}\right), 118.72$ (C-1), 127.01 (${ }^{\prime}-1^{\prime}$), $131.44\left(\mathrm{C}-2^{\prime},-6^{\prime}\right), 141.45(\mathrm{C}-6), 156.87\left(\mathrm{C}-4^{\prime}\right)$, $161.76(\mathrm{C}-2) .162 .49(\mathrm{C}-4)$ and $205.03(\mathrm{CO}) ; m /=(17 \mathrm{eV}) 258$
$\left(\mathrm{M}^{+}, 23 \%\right), 256(20), 242(18), 197(12), 164(17), 151(100), 140$ (12) and 134 (22) (Found: $\mathrm{M}^{+}, 258.0889 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$ requires M, 2.58.0892).

2,3,4,4'-Tetrahydroxydeoxybenzoin [2-(4-hydroxyphenyl)-1-(2,3,4-trihydroxyphenyl)ethanone] 3p (this compound has been mentioned in a Chinese article ${ }^{48}$ but details of its characterization are lacking). Yellowish crystals, m.p. 208$209{ }^{\circ} \mathrm{C}$ (from $94 \% \mathrm{EtOH}$) (Found: C, 64.5; H, 4.6. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $\mathrm{C}, 64.6 ; \mathrm{H}, 4.6 \%) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 4.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $6.48(1 \mathrm{H}, \mathrm{d}, J 8.8,5-\mathrm{H}), 6.79\left(2 \mathrm{H}, \mathrm{d}, J 8.6,3^{\prime}-\mathrm{and} 5^{\prime}-\mathrm{H}\right), 7.17(2$ $\mathrm{H}, \mathrm{d}, J 8.6,2^{\prime}$ - and $\left.6^{\prime}-\mathrm{H}\right), 7.56(1 \mathrm{H}, \mathrm{d}, J 8.8,6-\mathrm{H}), 7.83(1 \mathrm{H}$, br s, $\mathrm{OH}), 8.22(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 8.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $12.77(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}) ; \delta_{C}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 44.41\left(\mathrm{CH}_{2}\right), 108.67(\mathrm{C}-5), 114.07\left(\mathrm{C}-1^{\prime}\right)$, 116.51 (C-3', -5'), 124.49 (C-6), 127.18 (C-1'), 131.69 (C-2', $\left.-6^{\prime}\right), 133.51(\mathrm{C}-3), 153.07(\mathrm{C}-2), 153.90\left(\mathrm{C}-4^{\prime}\right), 157.65(\mathrm{C}-4)$ and $204.067(\mathrm{CO}) ; m / z 260\left(\mathrm{M}^{+}, 22 \%\right), 153$ (100), 125 (3) and 107 (11) (Found: $\mathrm{M}^{+}, 260.0688 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $\mathrm{M}, 260.0685$).

4',8-Dihydroxyisoflavone [8-hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one] 4b. Pale brownish crystals, m.p. $265^{\circ} \mathrm{C}$ (from EtOH$) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone) $6.90\left(2 \mathrm{H}, \mathrm{d}, J 8.7,3^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right)$, $7.29(2 \mathrm{H}, \mathrm{d}, J 5.4,6-$ and $7-\mathrm{H}), 7.50\left(2 \mathrm{H}, \mathrm{d}, J 8.7,2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$, $7.67(1 \mathrm{H}, \mathrm{d}, J 5.4,5-\mathrm{H}), 8.27(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.50(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $9.30(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 116.23\left(\mathrm{C}-3^{\prime},-5^{\prime}\right), 116.93$ (C-7), 119.89 (C-5), 124.65 (C-4a), $125.70(\mathrm{C}-3), 126.22$ (C-6), 126.97 ($\mathrm{C}^{\prime} 1^{\prime}$), 131.53 (C-2', $\left.-6^{\prime}\right), 147.96$ (C-8a), 153.70 (C-4', -2), $158.77(\mathrm{C}-8)$ and $176.94(\mathrm{C}-4) ; m / z 254\left(\mathrm{M}^{+}, 100 \%\right), 253$ $\left(\mathbf{M}^{+}-1,12\right), 136(37), 135(16), 118$ (17) and 108 (9) (Found: $\mathrm{M}^{+}, 254.0573 . \mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{M}, 254.0580$).

4'-Hydroxy-6-methylisoflavone [3-(4-hydroxyphenyl)-6-methyl-4H-1-benzopyran-4-one] 4d. Pale yellow crystals, m.p. $210-211^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}$); $\delta_{\mathrm{H}}\left({ }^{2}{ }^{2} \mathrm{H}_{6}\right]$ acetone) 2.48 (3 $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.89\left(2 \mathrm{H}, \mathrm{d}, J 8.7,3^{\prime}-\mathrm{and} 5^{\prime}-\mathrm{H}\right), 7.49\left(3 \mathrm{H}, \mathrm{d}, J 8.7,2^{\prime}-\right.$ $6^{\prime}-$ and $\left.8-\mathrm{H}\right), 7.61(1 \mathrm{H}, \mathrm{dd}, J 9$ and $2,7-\mathrm{H}), 8.00(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$, $8.26(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.47(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 20.96$ (Me), 116.22 ($\left.\mathrm{C}^{\prime} 3^{\prime},-5^{\prime}\right), 119.19$ (C-8), 124.74 (C-4a), 125.49 (C3), $125.74\left(\mathrm{C}-1^{\prime}\right), 126.35(\mathrm{C}-5), 131.47\left(\mathrm{C}-2^{\prime},-6^{\prime}\right), 136.04(\mathrm{C}-7)$, $136.30(\mathrm{C}-6), 154.18(\mathrm{C}-2), 155.79\left(\mathrm{C}-4^{\prime}\right), 158.71(\mathrm{C}-8 \mathrm{a})$ and $178.36(\mathrm{C}-4) ; m / z 252\left(\mathrm{M}^{+}, 93 \%\right), 251\left(\mathrm{M}^{+}-1,43\right), 165(4), 152$ (3), 135 (16), 134 (17), 126 (4), 118 (14), 106 (8) and 89 (7) (Found: $\mathrm{M}^{+}, 252.0783 . \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3}$ requires $\mathrm{M}, 252.0787$).

7-Hydroxy-3'-methoxyisoflavone [7-hydroxy-3-(3-methoxy-phenyl)-4H-1-benzopyran-4-one] 4i. Crystals m.p. $218{ }^{\circ} \mathrm{C}$ (from $94 \% \mathrm{EtOH}$) (Found: C, $71.7 ; \mathrm{H}, 4.5 . \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.7$; $\mathrm{H}, 4.5 \%) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.90-7.01(3 \mathrm{H}, \mathrm{m}$, $4^{\prime}-, 6-$ and $\left.8-H\right), 7.12-7.26\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.36(1 \mathrm{H}, \mathrm{t}, J 8$, $\left.5^{\prime}-\mathrm{H}\right), 8.01(1 \mathrm{H}, \mathrm{d}, J 8.7,5-\mathrm{H}), 8.39(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $10.88(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}) ; \delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 55.16(\mathrm{OMe}), 102.42(\mathrm{C}-8), 113.50(\mathrm{C}-6)$, 114.94 (C-4'), 115.54 (C-2'), 116.97 (C-4a), 121.48 (C-6'), 123.67 (C-3), 127.65 (C-5'), 129.43 (C-5), 133.81 (C-1'), 154.28 (C-2), $157.82(\mathrm{C}-8 \mathrm{a}), 159.43\left(\mathrm{C}-3^{\prime}\right), 163.10(\mathrm{C}-7)$ and $174.82(\mathrm{C}-4) ; m / z$ $268\left(\mathrm{M}^{+}, 100 \%\right), 267\left(\mathrm{M}^{+}-1,76\right), 253(7), 239(17), 238$ (18), $225(7), 136(10), 132(18), 108(10), 102(12)$ and $89(11)$ (Found: M^{+}, 268.0730. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{M}, 268.0735$).

6-Chloro-4',7-dihydroxyisoflavone [6-chloro-7-hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one $] \mathbf{4 m}$. Off-white crystals, m.p. 324-325 ${ }^{\circ} \mathrm{C}$ (from aq. EtOH); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 6.82(2 \mathrm{H}, \mathrm{d}, J$ $8.4,3^{\prime}-$ and $\left.5^{\prime}-\mathrm{H}\right), 7.07(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 7.39\left(2 \mathrm{H}, \mathrm{d}, J 8.4,2^{\prime}-\right.$ and $6^{\prime}-$ $\mathrm{H}), 8.00(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 8.34(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $9.58(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 103.79(\mathrm{C}-8), 115.22\left(\mathrm{C}-3^{\prime},-5^{\prime}\right), 117.30(\mathrm{C}-6)$, 119.85 (C-4a), 122.43 (C-3), 123.69 (C-1'), 126.39 (C-5), 130.34 (C-2', -6'), $153.50(\mathrm{C}-2), 155.94$ (C-8a), 157.65 (C-4'), 158.24 (C7) and $174.27(\mathrm{C}-4) ; m / z 288\left(\mathrm{M}^{+}, 100 \%\right), 287\left(\mathrm{M}^{+}-1,45\right), 171$ (32), $170(6), 142(8), 118(40)$ and $89(11)$ (Found: $\mathrm{M}^{+}, 288.0192$. $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClO}_{4}$ requires $\mathrm{M}, 288.0190$).

4',7-Dihydroxy-8-methylisoflavone [7-hydroxy-3-(4-hydroxy-phenyl)-8-methyl-4H-1-benzopyran-4-one] $\mathbf{4 n}$. Off-white crystals, m.p. $319-320^{\circ} \mathrm{C}$ (from CHCl_{3}) (lit., ${ }^{39}$ m.p. $236-237{ }^{\circ} \mathrm{C}$ from EtOH$) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.25(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.82(2 \mathrm{H}, \mathrm{d}, J$
8.4, $3^{\prime}-$ and $\left.5^{\prime}-\mathrm{H}\right), 7.01(1 \mathrm{H}, \mathrm{d}, J 8.6,6-\mathrm{H}), 7.40\left(2 \mathrm{H}, \mathrm{d}, J 8.4,2^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.85(1 \mathrm{H}, \mathrm{d}, J 8.6,5-\mathrm{H}), 8.38(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 9.55(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH})$ and $10.66(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 7.85(\mathrm{Me}), 110.76$ (C-8), $113.80(\mathrm{C}-6), 114.88\left(\mathrm{C}-3^{\prime},-5^{\prime}\right), 116.65(\mathrm{C}-4 \mathrm{a}), 122.58$ (C-3), 122.98 (C-1'), 123.68 (C-5), 129.95 (C-2', $\left.\mathbf{- 6}^{\prime}\right), 152.72$ (C-2), 155.45 (C-4'), 157.05 (C-8a), 159.82 (C-7) and 175.04 (C4); $m /=268\left(\mathrm{M}^{+}, 97 \%\right), 267\left(\mathrm{M}^{+}-1,48\right), 256(5), 239(3), 151$ (21), 150 (15), 129 (5), 122 (11), 118 (8) and 97 (6) (Found: M^{+}, 268.0738. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{M}, 268.0736$).

2-($2^{\prime}, 4^{\prime}$-Dihydroxyphenyl)benzofuran [4-(benzofuran-2$y l)$ benzene-1,3-diol] 5. Pale brownish crystals, m.p. $144{ }^{\circ} \mathrm{C}$ (from PhH) (Found: $\mathrm{C}, 74.3 ; \mathrm{H}, 4.5 . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.3 ; \mathrm{H}$, $4.5 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.34-6.41\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 6.94-7.02$ ($3 \mathrm{H}, \mathrm{m}, 3-6-$ and $8-\mathrm{H}$), $7.21-7.38(2 \mathrm{H}, \mathrm{m}, 5-$ and $7-\mathrm{H}), 7.58(1 \mathrm{H}$, d, $\left.J 8.3,6^{\prime}-\mathrm{H}\right), 8.64(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $9.21(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 102.97(\mathrm{C}-3), 104.10\left(\mathrm{C}-6^{\prime}\right), 108.67\left(\mathrm{C}-3^{\prime}\right), 110.18$ $\left(\mathrm{C}-1^{\prime}\right), 111.11(\mathrm{C}-5), 121.08(\mathrm{C}-7), 123.32(\mathrm{C}-6), 123.94(\mathrm{C}-8)$, 128.69 (C-5'), 130.27 (C-4), 154.29 (C-2'), 154.65 (C-4'), 156.08 (C-2) and $159.12(\mathrm{C}-9) ; m /=226\left(\mathrm{M}^{+}, 100 \%\right), 197(20), 181$ (3), 169 (4), 141 (4) and 113 (5) (Found: $\mathrm{M}^{+}, 226.0624 . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{3}$ requires $\mathrm{M}, 226.0630$).

Acknowledgements

We thank Mr. Jorma Matikainen and Mr. Seppo Räisänen for running the mass spectra. Financial support to K . Wähälä from the Emil Aaltonen Foundation is gratefully acknowledged.

References

1 D. A. Shutt, Endeavour, 1976, 35, 110.
2 H. Adlercreutz, Gastroenterology, 1984, 86, 761.
3 H. Adlercreutz, T. Fotsis, C. Bannwart, T. Mäkelä, K. Wähälä, G. Brunow and T. Hase, J. Steroid Biochem., 1986, 25, 791.
4 K. R. D. Setchell and H. Adlercreutz in Gut Flora in Toxicology and Cancer, Academic, London, 1988, 315.
5 E. C. Taylor, R. A. Conley, D. K. Johnson, A. McKillop and M. E. Ford, J. Org. Chem., 1980, 45, 3433.
6 R. V. Suresh, C. S. Rukmani Iyer and P. R. Iyer, Tetrahedron, 1985. 41, 2479.
7 P. M. Dewick, in The Flavonoids, Adtances in Research, ed. J. B. Harborne and T. J. Mabry, Chapman and Hall, London, 1982, p. 552.
8 R. J. Bass, J. Chem. Soc., Chem. Commun., 1976, 78.
9 A. Pelter and S. Foot, Synthesis, 1976, 326.
10 A. Pelter, R. S. Ward and D. H. J. Ashdown, Synthesis, 1978, 843.
11 W. D. Ollis, in The Chemistry of Flavonoid Compounds, ed. T. A. Geissman, Pergamon, Oxford, 1962, p. 385.
12 H. Wagner and L. Farkas, in The Flavonoids, ed. J. B. Harborne, T. J. Mabry and H. Mabry. Chapman and Hall, London, 1975, p. 184.
13 S. Mohanty and S. K. Grover, Curr. Sci., 1988, 57, 537.
14 S. Karmakar, J. Sci. Ind. Res., 1961, 20, 334.
15 K. C. Luk, L. Stern, M. Weigele, R. A. O’Brien and N. Spirt, J. Nat. Prod., 1983, 46, 852.
16 T. C. Chadha, H. S. Mahal and K. Venkataraman, J. Chem. Soc., 1933, 1459.

17 M. O. Farooq, W. Rahman, M. Ilyas and S. Jehan, Chem. Ber., 1961, 94, 1996.
18 P. C. Joshi and K. Venkataraman, J. Chem. Soc., 1934, 513.
19 L. A. Paquette and H. S. Stucki, J. Org. Chem., 1966, 31, 1232.
20 M. S. Chauhan and I. W. Still, Can. J. Chem., 1975, 53, 2880.
21 M. P. Pereira, C. M. Correa, J. Rego de Sousa and M. A. Teixeira, Quim. Nova, 1988, 11, 196.
22 T. R. Ingle, N. L. Phalnikar and B. V. Bhide, J. Indian Chem. Soc., 1949, 26, 569.
23 Y. Kawase, Bull. Chem. Soc. Jpn.. 1959, 32, 11.
24 G. M. Huitink, Talanta, 1980, 27, 977.
25 E. Walz, Justus Liehigs Ann. Chem., 1931, 489, 118.
26 A. Pelter, R. S. Ward and R. J. Bass, J. Chem. Soc., Perkin Trans. I, 1978, 666.
27 H. C. Jha, F. Zilliken, W. Offermann and E. Breitmaier, Can. J. Chem., 1981, 59, 2266.
28 H. C. Jhan, F. Zilliken and E. Breitmaier, Can. J. Chem., 1980, 58, 1211.

29 J.-E. Kinjo, J.-I. Furusawa, J. Baba, T. Takeshita, M. Yamasaki and T. Nohara, Chem. Pharm. Bull., 1987, 35, 4846.

30 D. M. X. Donnelly, J. C. Thompson, W. B. Whalley and S. Ahmad, J. Chem. Soc., Perkin Trans. I, 1973, 1737.
31 H. Adlercreutz, P. I. Musey, T. Fotsis, C. Bannwart, K. Wähälä, T. Mäkelä, G. Brunow and T. A. Hase, Clin. Chim. Acta, 1986, 158, 147.
32 C. Bannwart, H. Adlercreutz, K. Wähälä, T. Kotiaho, A. Hesso, G. Brunow and T. A. Hase, Biomed. Environ. Mass Spectrom., 1988, 17, 1. 33 W. Baker and F. M. Eastwood, J. Chem. Soc., 1929, 2897.
34 T. J. Batterham and R. J. Highet, Aust. J. Chem., 1964, 17, 428.
35 M. H. A. Elgamal, D. Voigt and G. Adam, J. Prakt. Chem., 1986, 328, 893.

36 T. Makoto, Y. Hisashi, S. Tamotsu and S. Shoji, Chem. Pharm. Bull., 1972, 20, 2488.
37 H. Ohashi, H. Takeuchi, S. Umemura and H. Imamura, Mokuzai Gakkaishi, 1982, 28, 463 (Chem. Abstr., 1982, 97, 146373y).
38 G. Venkataratnam, Erraguntla Venkata Rao and C. Vilain, J. Chem. Soc., Perkin Trans. 1, 1987, 2723.
39 M. Krishnamurti and T. R. Seshadri, J. Sci. Ind. Res., Sect. B, 1955, 14, 58.
40 R. J. Bass, Ger. Offen., $2640617 / 1977$ (Chem. Abstr., 1977, 87, 5809b).
41 H. G. Krishnamurty and J. Siva Prasad, Tetrahedron Lett., 1977, 3071.

42 H. Audier, Bull. Soc. Chim. Fr., 1966, 2893.
43 W. Baker and R. Robinson, J. Chem. Soc., 1926, 2713.
44 J. L. Ingham, Fortschr. Chem. Org. Naturst., 1983, 43, 1.
45 P. H. Gore in Friedel-Crafts and Related Reactions, ed. G. A. Olah, Interscience, New York, 1964. vol. 3, p. 46.
46 F. Nakatsubo and T. Higuchi, Hol-forschung, 1975, 29, 193 (Chem. Abstr., 1976, 84, 123659p).
47 A. McKillop, B. P. Swann and E. C. Taylor, J. Am. Chem. Soc., 1973, 95, 3340.
48 G.-X. Shao, R.-Y. Mo, C.-Y. Wang, D.-Y. Zhang, Z.-Z. Yin, R. Ouyang and L.-N. Xu, Yao Hsueh Hsueh Pao. 1980, 15, 538 (Chem. Abstr., 1981, 94, 174809b).

Paper 1/02919C
Received 17th June 1991
Accepted 17th July 1991

[^0]: \dagger Earnet/Bitnet HASE a FINUHA or WAHALA $(a$ FINUHA

